Planck made many substantial contributions to theoretical physics, but his fame as a physicist rests primarily on his role as the originator of quantum theory, which revolutionized human understanding of atomic and subatomic processes. In 1948, the German scientific institution Kaiser Wilhelm Society (of which Planck was twice president) was renamed Max Planck Society (MPG). The MPG now includes 83 institutions representing a wide range of scientific directions.
<
►
>
Plaque at the Humboldt University of Berlin: "Max Planck, discoverer of the elementary quantum of action h, taught in this building from 1889 to 1928." @ Kaihsu Tai/cc-by-2.5
In 1905, the three epochal papers by Albert Einstein were published in the journal Annalen der Physik. Planck was among the few who immediately recognized the significance of the special theory of relativity. Thanks to his influence, this theory was soon widely accepted in Germany. Planck also contributed considerably to extend the special theory of relativity. For example, he recast the theory in terms of classical action. Einstein’s hypothesis of light quanta (photons), based on Heinrich Hertz’s 1887 discovery (and further investigation by Philipp Lenard) of the photoelectric effect, was initially rejected by Planck. He was unwilling to discard completely Maxwell‘s theory of electrodynamics. “The theory of light would be thrown back not by decades, but by centuries, into the age when Christiaan Huygens dared to fight against the mighty emission theory of Isaac Newton …” In 1910, Einstein pointed out the anomalous behavior of specific heat at low temperatures as another example of a phenomenon which defies explanation by classical physics. Planck and Nernst, seeking to clarify the increasing number of contradictions, organized the First Solvay Conference (Brussels 1911). At this meeting Einstein was able to convince Planck. Meanwhile, Planck had been appointed dean of Berlin University, whereby it was possible for him to call Einstein to Berlin and establish a new professorship for him (1914). Soon the two scientists became close friends and met frequently to play music together.
At the end of the 1920s, Bohr, Heisenberg and Pauli had worked out the Copenhagen interpretation of quantum mechanics, but it was rejected by Planck, and by Schrödinger, Laue, and Einstein as well. Planck expected that wave mechanics would soon render quantum theory – his own child – unnecessary. This was not to be the case, however. Further work only served to underscore the enduring central importance of quantum theory, even against his and Einstein’s philosophical revulsions. Here Planck experienced the truth of his own earlier observation from his struggle with the older views during his younger years: “A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it.”